Linear Conditions on f-Vectors of Polyhedra

28 June, 1995

Beifang Chen

University of Science and Technology, Hong Kong

O. Abstract

In the theory of polytopes, it is well known that the Euler equations and the Dehn-Sommerville equations are the only (rational) linear conditions for f-vectors (numbers of simplices of various dimensions) of simplicial polytopes which can be viewed as triangulations of spheres. Following Klee's early paper on Euler manifolds, in this talk we consider f-vectors of triangulations of vectors of Euclidean triangulations and their linear conditions over Z and Z_k . For closed manifolds, the only linear condition is the Euler relation. For Eulerian manifolds with boundary index, some modulo integer relations do occur.

I. Preliminaries:

Let X be a n-dimensional polyhedron in \mathbb{R}^n . Given a triangulation Δ on X, we have the f-vector $f = (f_0, f_1, \ldots, f_n)$ where f_i = the number of i-dimensional simplices in Δ .

Problem: Classify all relations of the f-vectors for all triangulations of X. (usually we focus on linear relations)

II. Some results

Euler: $\sum_{k=0}^{n} f_k(-1)^k = \chi(X)$

Dehn-Sommerville for a 2-dimensional manifold Σ^2 ,

$$f_0 - f_1 + f_2 = \chi(\Sigma^2) \quad 3f_2 = 2f_1$$

Klee classified polyhedra satisfying the Dehn-Sommerville relations, in a sense. (Recall the Dehn-Sommerville relations: If X is the bounary of a simplicial polytope, then all linear relations are generated by

$$f_i = \sum_{j=i}^{n-1} (-1)^{n-j-1} \binom{j+1}{i+1} f_j, -1 \le i \le n-1$$

where $f_{-1} = 1$ is the Euler relation. Only $\lfloor \frac{n}{2} \rfloor$ of these equations are independent.)

This work is stimulated by Klee's paper, A combinatorial analysis of Poincare's duality theorem, Canadian Journal of Math, 16 (1964) 517-531.

III. f—vectors of manifolds with boundary

Let σ be an open simplex in a triangulation Δ on M (with boundary ∂M). Fix $i = 0, 1, \ldots, n = \dim M$. Then (a sort of Möbius function):

$$\sum_{\sigma \leq \tau, \dim \sigma = i} (-1)^{\dim \tau - \dim \sigma} = \sum_{\sigma, \dim \sigma = i} (-1)^i \sum_{\sigma \leq \tau} (-1)^{\dim \tau}$$

$$= \sum_{\dim \sigma = i} (-1)^i \chi(\operatorname{nbd}(x)) \quad \text{where } \chi \text{ is not the usual Euler number}$$

$$= \inf_{\text{in the noncompact case, and } nbd(x) \text{ is a star-shaped}$$

$$= \inf_{\text{neigborhood of an arbitrary point } x \in \sigma$$

$$= \sum_{\dim \sigma = i} (-1)^i \begin{cases} (-1)^n & \sigma \subset M \backslash \partial M \\ 0 & \sigma \subset \partial M \end{cases}$$

$$= (-1)^{n-i} f_i(M \backslash \partial M)$$

$$= (-1)^{n-i} (f_i(M) - f_i(\partial M))$$

On the other hand, the sum is also

$$= \sum_{j \ge i} \sum_{\dim \tau = j} (-1)^j \sum_{\sigma \le \tau, \dim \sigma = i} (-1)^i$$

$$= \sum_{j = i}^n \sum_{\dim \tau = j} {j+1 \choose i+1} (-1)^{j-i}$$

$$= \sum_{j = i}^n (-1)^{j-i} {j+1 \choose i+1} f_j(M)$$

so we conclude that [Dehn-Sommerville for general manifolds with boundary]

$$f_i(\partial M) = [1 - (-1)^{n-i}] f_i(M) + \sum_{j=i+1}^n (-1)^{n-j-1} {j+1 \choose i+1} f_j(M)$$

This can be thought of as a linear transformation from $Z^{n+1} \to Z^n$, where the $(n+1) \times n$ matrix is a "Dehn-Sommerville" matrix, which looks like

$$D(n) = \begin{pmatrix} x & -\begin{pmatrix} 2\\1 \end{pmatrix} & \begin{pmatrix} 3\\1 \end{pmatrix} & \dots & \begin{pmatrix} n\\1 \end{pmatrix} & -\begin{pmatrix} n+1\\1 \end{pmatrix} \\ 0 & 2 & \dots & \dots & \dots \\ \vdots & \vdots & \ddots & \ddots & \vdots & \vdots \\ 0 & 0 & \dots & \dots & 2\begin{pmatrix} n+1\\n \end{pmatrix} \end{pmatrix}$$

where x = 0 if n is even, x = 2 if n is odd.

We also get some theorems like $D(n)f(M,\Delta) = -D(n)f(M-\partial M,\Delta) = f(\partial M,\partial \Delta)$.

As a corollary, D(n-1)D(n) = 0, $(I - D'(n))^2 = I$ and

$$\chi(D(n)v) = \begin{cases} 0 & n \text{ even} \\ 2\chi(v) & n \text{ odd} \end{cases}$$

where $\chi(v) = \sum_{k=0}^{n} v_k(-1)^k$.

[He considered the rational case, using a technical lemma concerning the existence of polytopal (Euclidean) triangulations δ_i with $\{f(D^n, \delta_i) - f(D^n, \delta_0)\}$ linearly independent, $1 \le i \le \lfloor \frac{n+1}{2} \rfloor$. See also Brønsdted, *Intro. to Convex Polytopes*. He found that the rational affine span f(M, all) is generated by the Euler equation, while the integer affine span f(Mrel T, all) is generated by Euler and Dehn-Sommerville.]

IV. Euler manifolds with boundary (c.f. Klee)

A polyhedron pair $(X, \partial X)$ is an Euler manifold with boundary if $\exists \beta \neq 0$, an integer such that

$$\chi(\operatorname{link}(x,X)) = \left\{ \begin{array}{cc} 1 - (-1)^n & x \not\in \partial X \\ 1 - (-1)^n + (-1)^n \beta & x \in \partial X \end{array} \right.$$

 β is called the boundary index. If $\beta = 0$, X is an Euler manifold (equivalent to Klee's definition).

For example, $S^2 \vee S^2$ (the one-point union of 2 spheres) is an Euler manifold – the link at that point is two circles. $S^2 \vee S^4$ is also. $S^2 \vee S^1$ is an Euler manifold with $\beta = 2$. Every manifold with boundary is an Euler manifold with $\beta = 1$.

Proposition: Let Δ be a triangulation of $(X, \partial X)$. Then $(X, \partial X)$ is an Euler manifold with boundary index β if \forall simplices $\sigma \in \Delta$,

$$\chi(\operatorname{link}(\sigma, \Delta)) = \left\{ \begin{array}{cc} 1 - (-1)^{n - \dim \sigma} & \sigma \not\in \partial X \\ 1 - (-1)^{n - \dim \sigma} + (-1)^{n - \dim \sigma} \beta & \sigma \in \partial X \end{array} \right.$$

$$(1 - (-1)^n)\chi(X) = \beta\chi(\partial X)$$

Corollary: If X is a compact Euler manifold without boundary, then $\chi(X) = 0$

[He also gave a technical theorem, $(X, \partial X)$ is an Euler manifold with boundary value β iff exactly one of three conditions holds..., etc.]

Theorem: $\partial(X,\partial X)$ is an Euler manifold without boundary. $\dim X + \dim \partial X$ is odd.

Theorem: If $(X^n, \partial X)$ is a compact Euler manifold with boundary index β , then the integer affine space of (X, relT) can be characterized by $\chi(c) = \chi(x)$ and $D(n)v = \beta f(\partial X, T)$. And if $\partial X \neq \emptyset$, boundary dimension is γ , then the integer affine span f(X) is characterized by $\chi(v) = \chi(x)$, $[D(r+1), F(r+1, n)]v = 0 \pmod{\beta}$, and [0, E(r+1, n)]v = 0, where

$$D(n) = \begin{bmatrix} D(m) & F(m,n) \\ 0 & E(m,n) \end{bmatrix}$$