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Abstract. We describe our experiment with an on-line collaborative en-
vironment where users share the execution of programs and communicate
via audio, video, and typed text. Collaborative environments represent
the next step in computer-mediated conferencing, combining powerful
compute engines, data persistence, shared applications, and teleconfer-
encing tools. As proof of concept, we have implemented a shared image
analysis tool, allowing geographically distinct users to analyze FITS im-
ages together. We anticipate that AstroVR! and similar systems will
become an important part of collaborative work in the next decade, with
applications in remote observing, spacecraft operations, on-line meet-
ings, and day-to-day research activities. The technology is generic and
promises to find uses in business, medicine, government, and education.

1. Introduction

Collaborative research in astronomy is the norm. Most papers published in the
Astrophysical Journal have multiple authors, and most multi-author papers in-
volve collaborators at different physical locations. The reasons for this are many:
the breadth of astronomy, the limited resources available to any one institution,
and the social nature of the enterprise. In any case there is a qualitative differ-
ence in how a project proceeds when the collaborators are geographically distinct
compared to when they are at the same place. Many of the differences are bar-
riers: of communication, of access to data, of access to software, and of access
to expertise. Researchers now cope with these barriers in a number of ways:
telephone, e-mail, ftp, giving each other local computer accounts for access over
the network, and more recently the creation of Web-based information services.
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We were motivated several years ago by advances in network connectivity
and multi-user database technologies to experiment with a new mode of remote
collaboration. Our idea was to build a multi-user, network-accessible environ-
ment which we could populate with tools useful for astrophysics research. We
thought such a system would be useful not only for distributed groups undertak-
ing research projects, but also for teleconferencing, small seminars, browsing the
astronomical portion of cyberspace, and providing a social space for participants.
Eventually this technology could be hooked up to telescopes and other facilities;
it could evolve in the direction of a “collaboratory,” wherein geographic location
becomes unimportant, and access to a wealth of services and tools is immediate.

During this interval a number of commercial vendors and NCSA have devel-
oped distributed whiteboard and teleconferencing applications, but these only
superficially meet the needs of scientific workers. These rudimentary shared en-
vironments often require particular hardware, the purchase of proprietary soft-
ware, have a limited toolset (NCSA Collage supports shared HDF data brows-
ing and is probably the most useful) and are not extensible. Nor do they have
persistence (i.e., maintenance of state between invocations), nor continuity of
availability. We were interested in developing a more science-fiction style cy-
berspace where participants could interact with each other and the environment
at any time, where changes to the environment could be persistent, and where
new tools and facilities could easily be added, often synergistically extending
the environment’s potential.

At TPAC, Van Buren was monitoring the development of multi-user net-
worked games called MUDs (Multi-User Dungeons). These client-server games
were usually written by graduate and undergraduate students, and plain telnet
was often the client. Generally they lacked the stability, support, extensibility,
and/or persistence of data needed for a true collaborative environment, but they
clearly were headed in the right direction as the idea of multi-user game servers
became more and more sophisticated. One particular server, called MOO (for
MUD Object-Oriented ), written by Stephen White of the University of Water-
loo, was chosen by Curtis to form the basis of his social virtual reality study
at Xerox PARC, and he took over its further development. This server sud-
denly became professionally supported and maintained. In all other respects it
was superior to the other MUD servers as well, so it became the choice for the
underlying software for AstroVR. At the same time, the Xerox workers were
thinking of extensions to the MOO technology that would support real-world
applications. They initiated the Jupiter project, which is further described in
Section 2.2. At this point we began a formal collaboration where AstroVR in-
corporates and tests the Jupiter technology, as well as prototyping new Jupiter
extensions. AstroVR further extends the MOO and Jupiter technologies to in-
clude astronomically useful tools.

2. Architecture (with Examples)

2.1. The MOO Server

AstroVR’s MOO server manages the many network connections and communi-
cations streams making up the environment. Contained in the server’s database
are objects, i.e., data structures containing code and information implement-



ing the various capabilities. For example, one object generates “post-it” notes
that users can pop onto each other’s screens from a distance. Another object
implements a shared Mosaic Web browser, and yet another allows a group of
astronomers to join in the analysis of a single image, even though they may be
sitting at workstations thousands of miles apart.

The basic architecture is client-server. In fact, the environment is heavily
distributed, in that it makes use not only of the MOO server, but also auxiliary
servers, remote information services, and a potentially distributed multi-process
client. AstroVR also includes the entire public portion of the World-Wide-Web
in its data space. The MOO server provides the persistent database and ma-
nipulative functions that manage the environment. It comprises a general pur-
pose, multi-user, object-oriented database and an embedded C-like language:
the MOO language. A “core” database, the LambdaCore, served as our start-
ing point. This database included a general-purpose object-class library and
sufficient code to further extend the environment. The MOO server and Lamb-
daCore, as well as a programmer’s manual? for the MOO language, are available
in their most recent form via ftp3.

The embedded MOO language makes AstroVR an extensible, evolving sys-
tem. The behavior of all objects in the AstroVR database is defined by verbs
(methods) and properties (data). Objects, verbs, and properties are created
and altered from within the environment, making it easy to add and test new
functionality without recompiling the server. An object attains its behavior in
several ways. First, it inherits the behavior of its parent object, and the par-
ent’s parent, etc. Secondly, new verbs (possibly overriding inherited verbs) can
be attached to objects. Thirdly, there is a large class of utility objects holding
large libraries of general-use verbs. Finally, objects have data attached to them
which represent their state, which of course affects their subsequent behavior.

The act of extending the functionality of existing objects and creating new
objects in AstroVR is called “building.” All users are potentially builders. Be-
cause the environment also facilitates communication between users, building
becomes a collaborative effort itself. Many of the tools that exist are in fact
building tools. In this sense, AstroVR is a meta-tool: it is used to create itself!

Building often takes the form of creating an instance of a previously existing
object and then defining new behaviors by attaching verbs and properties to the
new object. As a hypothetical example (the MOO server does not yet support
floating-point math), consider how we might create an astrophysically interesting
calculator, the H 11 region calculator. We want this specialized calculator to
know how to figure Stromgren radii. Suppose that there is already a calculator
object, $§calculator, embodying the behavior of a general-purpose calculator.
We create a child of $calculator to be our starting point because all of behavior
of $calculator will be inherited. The new object is placed in our “namespace”
and we operate on it, referring to it by a unique identifier. In particular, we next
add a verb “r_stromgren” to the calculator which will do the work in calculating
Stromgren radii, but which is initially empty. To create the verb code we invoke
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the AstroVR verb editor GUI and edit the verb code in a textedit widget. The
textedit widget supports many emaecs commands and is used in many places
inside AstroVR for data entry. The MOO server side of the verb editor is
implemented entirely in MOO code.

There is a sophisticated permissions system inside AstroVR, because in a
multi-user environment not everyone should be able to do anything at any time.
It turns out that writing secure verbs is not that difficult, but it is necessary
to guarantee that objects behave properly. For example, suppose users Galileo
and Copernicus were happily working out Stréomgren radii with the H 11 region
calculator. Then user Herschel, who is not participating in the collaboration,
should not be able to punch numbers into the calculator, turn it off, or otherwise
alter its state.

2.2. The Jupiter Client

The Jupiter user client is the same client that Xerox is using for its Jupiter
project, where a virtual environment is being overlaid on the physical environ-
ment at PARC, using a MOO-based cyberspace. For most game MUDs, telnet
is an (almost) adequate client, providing a single typescript where users issue
commands and receive output from the server. But in a collaborative environ-
ment, where a number of tools may be in simultaneous use, a more sophisticated
client is needed. The Jupiter client meets this need by supporting window inter-
faces to AstroVR objects; other capabilities include multicast audio and video
support, transparent file transfer, and a generic interface for local applications
to be shared with other AstroVR users.

The Jupiter window support is similar in architecture to the GUI layer
for IRAF (Tody 1995), but with a slightly different widget set and window
definition language. In a nutshell, the client builds and manages GUIs after
receiving text strings from the MOO server which encode their character and
behavior. Subsequently, only significant events (such as mouse clicks, but not
mouse motions) initiate messages to be sent back to the MOO server. This
approach represents a drastic reduction in network traflic compared to running
X windows across the network.

Since the same network connection passes in one direction both plain text
meant to be read by the user and requests for the client to do something, and
in the other direction both plain text representing user commands to the server
and client commands to the server to do something, we use an out-of-band
(OOB) protocol. OOB messages across the network connection are #$#-escaped,
newline-terminated strings. When sent to the server they are intercepted by a
special object for further processing and dispatch. For example, the user may
have changed the microphone gain using the volume slider on the main client
window. In this case, the following OOB command is sent to the AstroVR
server:

#$#win-event id: ’’315°° widget: ’’mgain’’ value: ’’27°°

The OOB protocol in the client-to-server direction is defined by #$# followed
immediately by a request type string, then a set of key and quoted value pairs.
An extension allows an arbitrarily long list of newline-terminated strings to be
sent. In the other direction, from server to client, there is an additional datum



Help| Who| Home Leave AstroVE
Bpeaker Volume Microphone Volume Mute Speaker
| | Press to Talk
0 0 m Mure Microphone
Y
Figure 1. A particular client window. Buttons along the top are:

Help to invoke the built in help browser, Who to pop up a constantly
updating window that shows who else is on-line, Home to move to your
default location, and Leave AstroVR to shut down your user object,
client and network connection. Below are the audio gain and muting
controls. The bottom panel, which is truncated for display, is the
main input/output typescript where users issue AstroVR commands
and receive messages.

required to provide some level of security. An authentication key known only to
the trusted portion of the AstroVR server and client is included, and must be
correct for the request to be carried out:

#$#audio-set-microphone-gain ’’10565-258830’° value: ’’277°

In this case the client is being requested to change the microphone gain. Note
that the request to change the gain was made in the main client GUI, but the
actual change was made in response to the server’s notification to the client. In
Figure 1 we show a screen dump of a particular AstroVR client GUI It is only
a particular one because users are free to redefine their client GUI's (and many
other GUIs) according to taste. The user’s ability to customize the interface is
a key feature of our environment.

2.3. Auxiliary Servers and Remote Information Services

The MOQO server is capable of opening arbitrary network connections. In prin-
ciple this allows the integration of network based astronomical data services in
AstroVR. We created simple interfaces to NED, SIMBAD and the STELAR
abstract services to demonstrate the concept. Consequently, the data contained
in these remote services is available for further computing by AstroVR. If the
remote service’s protocol consists only of newline terminated strings of print-
able characters, like the WAIS protocol for example, AstroVR can make the
connection directly. Otherwise, as in the case of SIMBAD, a simple intermedi-
ate server is created as a stand-alone process that does the appropriate protocol
translations.

One interesting auxiliary server is used to overcome the MOO server’s cur-
rent lack of floating-point support. We have the Unix calculator program be
running as a server that can be connected to directly using MOO code. AstroVR
makes use of this by loading to the be server a list of strings in the be language
representing the calculation to be performed, and then reading the results as a



list of strings. Although the floating-point numbers are represented in AstroVR
as strings, they are computed as reals. This service suffers some overhead per
use, but a calculation proceeds quickly once the connection is made.

2.4. Multicast Support

Audio, video, and dynamic screen broadcast make use of the multicast network,
often called the “mbone.” This is a broadcast technology (one copy out) which
sends packets to destinations in a way that eliminates redundancies and is very
network friendly. The AstroVR server does not handle any of this data. Instead
it computes and sends switching information to the Jupiter client, telling it to
listen to a particular (or set of) mbone channel(s). For example, all AstroVR
users in the same virtual conference room are all tuned to the same mbone
channel. The mbone audio gives telephone-quality sound.

Microphones and speakers/earphones are inexpensive and readily available
for practically all workstations, and allow users to make use of this one feature
that goes the farthest in creating the impression of a virtual space. We also have
the capability for reduced frame rate video conferencing, but the expense of a
video board and camera currently restricts its use. Users without this hardware
can still receive video. Users with video boards can also define an area or areas
on their screens to broadcast to collaborators, allowing some sharing of data for
which a multi-user interface is not otherwise available, or to show the output of
a program that for security reasons a shared interface is unwise—for example a
telescope control system.

2.5. Client-Side Shared Applications

A large class of stand-alone applications may be shared through AstroVR and
its client. One can imagine two modes for sharing an application: in one mode
a single copy of the application is executing, with fan-in of user commands and
fan-out of outputs. This method requires a rather restrictive set of circumstances
because of the large variety of platforms and operating systems. In the other
mode each user sharing an application has a local copy which is synchronized via
AstroVR messages with those of the other users. Both modes are supported, and
we have implemented instances of each. There is a shared MONGO interface
which requires one collaborator to have MONGO locally. The other members of
the work group can issue commands, for example to overlay their own data points
on a plot being collaboratively constructed. The shared application interface
knows how to properly distribute the Tek4010 commands to display a plot on
an X windowing device (though more generic X windows are not supported).
What the user sees is an xterm for entering mongo commands and a Tek4010
window where the plot is constructed. The user commands are prepended by
the user-name of the person issuing the command to maintain accountability.
The second mode of sharing, where multiple local copies are synchronized
via AstroVR client requests issued by the server, is used for sharing the image
browsing and analysis tool “SkyView.” This tool was created originally for
analysis of TRAS images and is quite powerful, yet has a fairly simple command
set and grammar. Inside AstroVR we have built a shared interface that operates
with the shared application client software to present a SkyView GUIL. Even in
single user mode, the GUI provides much added value to SkyView users: it allows



the user to define macros and assign buttons to them, to manage separate image
frames easily, and generally to program SkyView in arbitrary ways using MOO
code attached to GUI callbacks.

A particularly useful shared application is NCSA Mosaic. AstroVR can
start a local Mosaic for document viewing in single-user as well as synchro-
nized /shared mode. At least in terms of data display, this gives AstroVR users
a vast cyberspace, but with the ability to do computations on URLs, and so
implement intelligent Web navigators. (In fact, we had implemented many of
Mosaic’s transparent fetch and display functions inside AstroVR and its client,
but the advent of the NCSA software means we can switch over and inherit all
their updates and be assured of a well maintained package.)

An issue that arises when sharing applications is exactly how are they to
be shared. Ome possibility is that commands are executed in the order they
are typed, no matter which participant does so. This can be thought of as a
first-come, first-served model, and is adequate for small (1-4 person) groups
working collaboratively as equals. When a large group is sharing an application,
this can break down and the users might want a different sharing model to be
implemented. An extreme model is leader-follower, where only a single user is
allowed to execute commands, and any other synchronized processes duly follow
suit. In this mode, commands issued by the other users are ignored. This model
is useful for doing software demos or when giving a seminar or on-line lecture.
One of the strengths of the AstroVR system is that both models are readily
implemented, and anything in between the two. We will discuss these models a
little more in the section on teleconferencing.

Finally, we show in Figure 2 the overall architecture of the AstroVR sys-
tem: server, clients, auxiliary and remote services, client-side processes, and the
multicast network.

3. A Sought-for Richness

The goal of building is to create a large enough set of objects to be useful
for conducting collaborative research. The technologies upon which AstroVR
is based allow and encourage users to contribute to defining and building this
toolset in a collaborative fashion. Our hope is that AstroVR users themselves
will generate much of the environment’s richness and functionality. But even a
small toolset allows interesting combinations and we fully expect that a much
larger set will allow for extremely powerful synergisms. Our thinking is based on
the experience leading to the ISSA Postage Stamp Server?, described elsewhere
in this volume by Van Buren, Ebert, & Egret (1995).

Almost two years ago a simple text interface was built in AstroVR for
SIMBAD; at the same time we were experimenting with transparent AstroVR-
mediated file transfer, and separately providing on-line access at IPAC to all the
ISSA® data. These ideas came together when we constructed a “virtual IRAS
satellite” inside AstroVR that would deliver to users small pieces of the infrared
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Figure 2. The AstroVR architecture, composed and displayed us-
ing the AstroVR shared whiteboard application. One connects to the
main server via user clients (C1, etc.), which in turn run local shared
applications and tune in to the multicast network (heavy lines). The
AstroVR server also makes connections to other local and remote ser-
vices, perhaps through intermediate protocol-translating servers (e.g.,
SIMBAD). The whiteboard itself can be shared by an arbitrary num-
ber of users. Commands are serviced on a first-come, first-served basis.
The buttons along the left affect the drawing mode: curlique for free-
hand drawing with spline smoothing; line to draw a line between two
points given by mouse clicks; boz to draw a rectangle; oval to draw an
ellipse; the letter “A” to write some text; parallelopiped to erase; four
dots to specify drawing color as black, red, green or blue; and three
line-width selectors. An arbitrarily large number of whiteboards may
be active at any one time. Whiteboard data is also easily saved and
restored, giving an archive capability.



sky identified by the name of a target or celestial coordinate. In the meantime
the idea of the World Wide Web exploded, leading us to build a general-purpose
Web server inside AstroVR to provide Web access to portions of the environment.
The virtual TRAS satellite was rewritten to make use of this interface, and was
recast as the ISSA Postage Stamp Server. Inside AstroVR users now have new
tools to further manipulate this service. One drawback of using NCSA “Mosaic”
to access the postage stamps is that it requires repetitive human input to get
data for a number of objects (unless one wants to write Mosaic drivers). The
ISSA Survey Engine was therefore created. It takes a list of target names or
positions edited with the built-in AstroVR text editor and delivers all the FITS
files to the user’s local system for further study. The lesson learned from this
exercise was that tools can be combined in new ways that are very powerful. In
the past, large resources at IPAC were spent delivering equivalent data to users
that is now automatically provided at miniscule expense.

4. Teleconferencing

The technology of teleconferencing is still in relative infancy. Most people have
experience with telephone conference calls. For small groups this can be an ef-
fective mode of communication since we are all fairly well socialized with correct
phone behavior. But with larger groups, the ambiguity of meaning, confusion of
speaking order, missing facial expressions, body language and other signals that
help facilitate a large conversation reduce the effectiveness of conference calls
drastically.

4.1. Floor Control

Floor control can be improved using in-server software to manage audio and
other data streams. FEach user has as part of the client an audio “receive”
channel and possibly a different audio “send” channel. For example, each distinct
location (or “room” in the VR metaphor) inside AstroVR normally has a unique
send /receive broadcast channel. As a user changes location, her audio channel
changes transparently so she can participate in whatever audio activities are
taking place in the new location. Other audio behaviors are possible because
the “send” and “receive” channels do not have to be the same. In lecture mode,
all the users’ “receive” channels are set to the lecturer’s “send” channel, but
everyone else’s “send” channels are unconnected, so their audio data are not
broadcast to the group. In “talking stone” mode, an object is passed from user
to user, essentially giving them temporary lecturer status. Or participants could
register an interest to speak with a meeting-chair object, and then talk when
their turn comes up in a first-come, first-served fashion. Another mode is where
a meeting facilitator services speaking requests with the assistance of a GUI that
keeps track of outstanding requests. Arbitrary floor control methodologies are
possible, so depending on circumstances the best one available can be chosen for
any given purpose.

One situation where floor control becomes very important is sequence plan-
ning for flight projects. The science team typically has a phone teleconference
with a dozen or so participants. Each member rightfully advocates a particular
course of action and all must be reconciled. Without proper floor control such
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meetings are inefficient, unsatisfying and sometimes the results are incorrect due
to errors arising from attention lapses, confusion or uncorrected misunderstand-
ings. Facilitator mode conferencing, especially if augmented with minute-taking
software (possibly working with audio records), shows great promise in increas-
ing the effectiveness of such meetings.

4.2, Human vs. Virtual Presence

For the forseeable future computer-mediated conferencing and on-line collab-
orative environments will not take the place of actually being with someone.
There is no substitute for seeing a person’s body language, feeling a casual
touch or sharing a meal. These kinds of social interaction are crucial to the
quality of many professional relationships and cannot be recreated in a virtual
environment. On the other hand, much effective work can be undertaken on-
line between visits, and if the environment is easy enough to use, the work can
proceed as any other work, unconstrained by geography.

5. A Rosy Future for Collaborative Environments?

This past summer the National Institute for Standards and Technology issued
a call for proposals to develop ideas for distributed multi-user software tech-
nologies in the field of manufacturing, explicitly targeting MUD and derivative
technologies. AT&T television advertisements feature multi-user, on-line envi-
ronments as what we can expect in the future. As network bandwidth increases
and the computing power of desktop machines does likewise, the technical ability
to create an immersive on-line environment will lead to the creation of multi-user
virtual spaces in many disciplines. Some obvious applications include medicine,
where consultations with distant physicians will be possible; education, where
classes and seminars can be held in fields that are too small to support a lo-
cal effort; government, where many meetings will no longer require travel; and
business, where far-flung operations can keep in touch and conduct business in
a virtual environment. The technology is a humanizing technology, enabling
people to come together for work or play from all over the world, to develop new
connections and to discover new ideas.
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