
C H A P T E R  3

Navigation

3.1 Introduction

Once you’ve constructed or loaded XML in a query, you need a way to navigate
over that hierarchical data. In many ways, construction and navigation are the
primary operations in any XML query language. XQuery provides a litany of
navigation expressions, and this chapter explores them all. Readers who are
already familiar with XPath 1.0 may safely skim this chapter. XQuery has some
differences from XPath 1.0, but they are minor.

Navigation involves starting from one part of an XML data model and mov-
ing to another part of the data model. Navigation can involve local steps, for
example, moving from a node to one of its neighbors, or global steps, such as
moving from a node to a completely different part of the data model, or even
another document.

If you’re familiar with relational databases, it may help to reflect that navi-
gating is to XML nodes what cursoring is to relational rowsets. Like using regu-
lar expressions to parse strings, using navigation in a query is generally more
efficient in space and time than manually traversing an XML structure.

3.2 Paths

Navigation involves starting from one part of an XML document and moving
to another part of the document (or a different document). XQuery per-
forms navigation using paths. Paths were invented in 1970 for use with the
PDP-11 file system. The path concept has been so generally useful that it
has found broad application in a variety of systems, including XML query
processing.

In XQuery, every path consists of a sequence of steps which, conceptually
at least, are executed in order from left to right. A step consists of three parts,
illustrated in Figure 3.1: 

63

03Brundage_ch03.qxd  1/8/04  1:09 PM  Page 63



■ A direction of travel, called the axis
■ A description of the nodes to select upon arrival, called the node test
■ Zero or more filters to further narrow that selection (each filter is called

a predicate)

By allowing some of these parts to be abbreviated or omitted entirely,
XQuery keeps paths very concise. Each of these parts is described next, and
then Section 3.5 has many examples demonstrating how to use paths to accom-
plish common tasks.

Each step affects the evaluation context for the next step. This context and
how it changes with each step are described in Section 3.4, but for now it’s
enough to know that there is a current context item that affects—and is affected
by—each step in the path. Except for predicates, navigation steps can be
applied only when the current context item is a node (in which case it is often
called the current context node).

3.2.1 Beginnings

Every path starts somewhere. For the purpose of XQuery navigation, there are
effectively three places from which a path can begin:

■ The current context node
■ The root of the tree in which the current context node resides
■ Any other node set, such as a variable or an XML constructor

With each successive step, the path may move to other nodes or alter the context.

64 Chapter 3 Navigation

Figure 3.1 Anatomy of a path 

Axis
Separator

Abbreviated
Axis

customer / child :: name [ @ id = 1 ]

Step

Predicate

Step

Step
Separator

Node
TestAxis

03Brundage_ch03.qxd  1/8/04  1:09 PM  Page 64



The root of the tree in which the current context node resides is selected by
a lone forward slash (/) or equivalently using the built-in root() function.
Paths beginning from the root are absolute. In contrast, paths starting from the
current context node are relative. Paths may also start from certain other
expressions, such as variables, function calls, or parenthesized expressions
(XQuery does not give a name to such paths). 

From these humble beginnings, paths may navigate anywhere in the docu-
ment, or even to other documents, step by step. Listing 3.1 shows a few paths.
In a path, individual steps are almost always separated by one forward slash (/).
(The exception, two forward slashes (//), is described in Section 3.2.4.)

Listing 3.1 Absolute, relative, and other paths

/AbsolutePath/First/Second

RelativePath[. = "fun"] 

$other//x

id("other")[@y > 1]/z

Paths with more than one step always result in a (possibly empty) sequence
of nodes, sorted in document order. To sort nodes in some other order, you
must use a FLWOR expression (see Chapter 6).

3.2.2 Axes

Each step consists of three parts: the axis (optional), the node test, and zero or
more predicates. XPath defines a total of thirteen axes, and all but the namespace
axis appear in XQuery. Of these, the four simplest and most commonly used ones
are child, attribute, parent, and self (see Table 3.1). The other axes are
explained in Section 3.2.4.

3.2 Paths 65

Axis name Abbreviation Equivalent examples

attribute @ x/attribute::y x/@y

child x/child::y x/y

parent .. x/parent::node() x/..

self . x/self::node() x/.

Table 3.1 The four basic axes and their abbreviations

03Brundage_ch03.qxd  1/8/04  1:09 PM  Page 65



The child axis is so common that it is the default axis if no axis name is spec-
ified explicitly. The other three common axes all have shorthand abbreviations
for convenience. XPath gets much of its succinctness from these shorthand
forms. When the non-abbreviated name is used, it is followed by two colons
(::) to distinguish axis names from XML qualified names (which contain at
most one colon).

These four axes behave exactly as their names suggest: 

■ The child axis navigates into the children of the current context node. 
■ The attribute axis navigates into the attributes of the current context

node. 
■ The self axis essentially goes nowhere (navigating into the current con-

text node itself).
■ The parent axis navigates to the parent of the current context node.

For example, x, which is short for child::x, selects the child elements
named x from the current context node, while x/y, which is short for
child::x/child::y, first selects the child elements named x from the current
context node just like the previous example, and then from those selects the
child elements named y.

3.2.3 Node Tests

Following the axis is the second part of the step, the node test. Node tests
come in three varieties: names (qualified or unqualified), node kinds, and
wildcards.

3.2.3.1 Name Tests

By far the most common node test is the name test. A name test selects only
those nodes with the same name. Names in XQuery, as in XML, are case-sensi-
tive. For example, the absolute path /x/y/@z starts at the root of the current
document, navigates to the top-level elements named x, navigates to their child
elements named y, and finally navigates to their attribute nodes named z. If you
were to execute this XQuery over the XML document in Listing 3.2, it would
select the two attributes named z and no other nodes.

Name tests can also select names that are in an XML namespace. How-
ever, this process is fairly complicated, so this description is deferred until Sec-
tion 3.6.1.

66 Chapter 3 Navigation

03Brundage_ch03.qxd  1/8/04  1:09 PM  Page 66



Listing 3.2 A sample XML document

<x thisAttribute="isNotSelected">

<y z="1"/>

<y z="2" thisAttribute="alsoIsNotSelected" </y>

</x>

3.2.3.2 Node Kind Tests

Name tests are not the only node tests available in navigation steps. In fact,
some kinds of XML nodes (for example, text, comment, and document nodes)
have no names at all. To select nodes by kind, XQuery uses the same node kind
tests used by sequence type matching (described in Chapter 2). Listing 3.3
shows two node kind tests.

Listing 3.3 Examples of node kind tests

x/comment()                (: select all comment children of x :)

x/attribute()              (: select all attributes of x :)

attribute(@*, xs:integer)  (: select all integer attributes :)

attribute(y)               (: select all attributes named y :)

attribute(y, xs:integer)   (: select integer attributes named y :)

Recall from Chapter 2 that the node() node test matches any kind of node,
including the document node. The text() and comment() node kind tests
match text nodes and comment nodes, respectively. The processing-

instruction() node test accepts an optional name argument. When no name
is specified, it matches all processing instruction nodes; otherwise, it matches
only those with the same name.

The document-node() test matches the invisible document node that occurs
at the root of any tree loaded from an XML document using doc() (or con-
structed using the document constructor—see Chapter 7). It accepts an optional
argument specifying an element node kind test, in which case it matches the doc-
ument node only if its element content matches that element test.

And finally, the element() and attribute() node kind tests accept optional
name and type arguments. Without these extra arguments, they match all ele-
ments and attributes, respectively; with these arguments, they match only ele-
ments or attributes that have the specified name and/or type. The name or type
can also be *, in which case it matches all names or all types, respectively. The

3.2 Paths 67

03Brundage_ch03.qxd  1/8/04  1:09 PM  Page 67



name specified in an attribute() test must start with an @ symbol to emphasize
that it matches attributes.

3.2.3.3 Wildcards

Sometimes you want to select all nodes whose name is in a particular name-
space, or conversely all nodes with the same local name regardless of the name-
space. There are two equivalent ways to accomplish this goal. One is to use
predicates; in fact, as you will see later, predicates can be used to perform all
kinds of tests.

A more succinct way is to use the third kind of node test, the wildcard.
Wildcard node tests combine aspects of both name and node kind tests; the
names matched depend on the wildcard, and the node kind matched depends
on the axis. The attribute axis by default selects attribute nodes; all other
XQuery axes select elements by default. The default node kind is called the
principal node kind for the axis.

XQuery supports three wildcard node tests. Two of these come from XPath
1.0: the star (*), which matches any name at all, and a qualified star (prefix:*)
that matches all names in the namespace to which the prefix is bound. XQuery
adds a third wildcard node test, *:local-name, which matches all names with
the given local name and any namespace.

The only difference between the star wildcard * and the node() node kind
test is that node() matches every kind of node with any name, while * matches
only nodes of the principal node kind (with any name).

3.2.4 Other Axes

XQuery supports two more axes from XPath 1.0, called descendant and
descendant-or-self. The descendant axis matches all descendants of the cur-
rent context node. (It is the closure of the child axis under fixed-point recur-
sion.) The descendant-or-self axis includes the current context node as well,
and so is equivalent to the union of the descendant and self axes.

The descendant-or-self axis is so commonly used that it has its own
abbreviation, //. Some caution should be observed when using it; it’s easy to
make mistakes when using predicates with // (see Chapter 11 for examples).

Additionally, implementations are allowed but not required to support
the other six axes from XPath: ancestor, ancestor-or-self, following,
following-sibling, preceding, and preceding-sibling. The first two of

68 Chapter 3 Navigation

03Brundage_ch03.qxd  1/8/04  1:09 PM  Page 68



these are the inverses of descendant and descendant-or-self axes. They
select all the ancestors of the current node (ancestor-or-self includes the
node itself).

The following and preceding axes select all the nodes in the same docu-
ment as the current context node that occur before and after it, respectively.
There’s really no reason to use them in XQuery, because the >> and << node
comparison operators allow you to write the same meaning more compactly
(see Chapter 5).

Finally, the following-sibling and preceding-sibling axes restrict
their selections to the siblings of the current context node (that is, those nodes
having the same parent as it).

3.2.5 Predicates

The third and final part of each navigation step consists of zero or more predi-
cates. Like the node test, each predicate acts as a filter on the selected nodes,
eliminating some from consideration and keeping the rest. For each node
selected by the current step, the current context item is set to that node and
then the predicate condition is evaluated with that context.

Any XQuery expression may be used inside a predicate; the meaning of the
predicate depends on the type of the expression it contains. There are two
cases: numeric and boolean predicates.

3.2.5.1 Numeric Predicates

Numeric predicates select nodes by their position in the current context. For
example, /x/y[1] selects the first y child element of each x element. As this
example demonstrates, predicates bind tightly to the current step. To apply a
predicate to the entire results of a path, you must use parentheses. For example,
(/x/y)[1] selects the first y element out of all the nodes selected by /x/y.

Because paths can start with other kinds of expressions, such as parenthe-
sized expressions, predicates can be applied to more than just sequences of
nodes. For example, the expression ("a", "b", "c")[2] selects the second
item in the sequence, the string "b".

Numeric predicates, like the ones in Listing 3.4, filter by position. In
general, when a predicate evaluates to a number N, it’s as if the predicate
were actually the boolean-valued predicate position()=N. For example, the
path /x[1] is equivalent to the path /x[position() = 1]. This expansion

3.2 Paths 69

03Brundage_ch03.qxd  1/8/04  1:09 PM  Page 69



applies not only to numeric constants, but also to any numeric-typed expres-
sion. For example, the path /x[@y + 1] is equivalent to the path /x[posi-
tion() = @y + 1].

Listing 3.4 Numeric predicates filter by position

(//Customer)[2]

Fruit[@index + 1]

The position is 1-based (the first item in the sequence is at position 1).
When the predicate evaluates to a non-integral value, a value less than 1, or a
value greater than the length of the sequence, then the predicate will be false
for all items in the sequence and the result will be the empty sequence. In
other words, it isn’t an error to select an index that is out of bounds for the
sequence.

3.2.5.2 Boolean Predicates

All other kinds of predicate expressions, such as the ones in Listing 3.5, filter a
sequence so that only those items for which the predicate evaluates to true are
kept. The predicate is converted to a boolean value by computing the Effective
Boolean Value of the expression.

Listing 3.5 All other predicates filter as boolean conditions

/x[@a=1 and @b=1]

/x[@a=1]/y[@b < 2]

As described in Section 2.6.2, the Effective Boolean Value acts as an exis-
tence test on sequences. Consequently, when the predicate is itself a path, the
predicate evaluates to true if and only if the node(s) selected by that path exist.
For example, x[y] matches all x elements that have a y child element, and
x[not(@y)] matches all x elements that don’t have a y attribute.

3.2.5.3 Successive and Nested Predicates

Several predicates can be applied to a step, with the effect that each predicate
is evaluated with respect to the nodes remaining after the previous predicate.

70 Chapter 3 Navigation

03Brundage_ch03.qxd  1/8/04  1:09 PM  Page 70



The order of evaluation of the predicates is always left to right, which matters
only when computing positional predicates. For example, the path
x[1][@y=2] selects the first x element (if there is one), and then only if that
element has a y attribute whose value is 2; while the path x[@y=2][1] selects
all x elements that have a y attribute whose value is 2, and then from that set
selects the first one. Over the XML <x y="3"/><x y="2"/> the first path
selects nothing (because the first x element has y="3"), while the second path
selects the second element.

Predicates can also be nested. For example, the path x[y[@z=1] = 2]

selects all x elements where there exists a y element with a z attribute equal to
1 and the value of the y element itself equals 2.

3.3 Navigation Functions

All of the navigation we’ve considered so far amounts to local steps: from the
current context, navigate to some nearby nodes. However, XQuery also defines
functions that can navigate more globally to other parts of a document or differ-
ent documents. These functions are summarized in Table 3.2, and fully docu-
mented in Appendix C.

Of these, the doc() function is the only one you are likely to commonly
use. It takes a single string argument, which is treated as the URI location of
an XML document. It then loads that document and returns the correspon-

3.3 Navigation Functions 71

Function Meaning XPath 1.0?

collection() A named sequence No

doc() Navigate to the root of the named XML document No

id() Navigate to the (unique) element with this ID Yes

idref() Navigate to the elements that refer to this one No

root() Navigate to the root of the current document No

Table 3.2 Navigation functions

03Brundage_ch03.qxd  1/8/04  1:09 PM  Page 71



ding XQuery Data Model instance. Certain aspects of this process, such as
security permissions and schema validation, vary from one implementation to
the next.

If the document cannot be found or is not well-formed, some implementa-
tions will raise an error, although they are also allowed to just return the empty
sequence. (This is mainly to allow certain XQuery optimizations; for example,
doc("x")[false()] could be optimized into the empty sequence without
attempting to load the document.)

The other functions are much less commonly used, so we defer their
description to Appendix C.

3.4 Navigation Context

Every XQuery expression is evaluated within a context, and several of the con-
text effects have a bearing on navigation. The context can vary during the evalu-
ation of a path, and some context information can be accessed using functions
or other expressions. XPath 1.0 defines six expression context information
items, and XQuery adds nine more, all listed in Table 3.3.

Expression context is divided into static context, which is available during
the compilation of the query, and evaluation context, which is available while
the expression is being evaluated dynamically. Some context information is
global to an entire query, while other context information is local and may vary
during compilation or evaluation.

3.4.1 Input Sequence

One value in the evaluation context is the input sequence. This sequence can be
accessed using the input() function, and doesn’t change during the execution
of a query. This value defines the initial context sequence (for example, used by
relative paths at the top of the query) and may be empty.

3.4.2 Focus

Part of the XQuery evaluation context is called the focus. Predicates and navi-
gation steps change the focus. This focus consists of three items: the context
item, the context position, and the context size.

72 Chapter 3 Navigation

03Brundage_ch03.qxd  1/8/04  1:09 PM  Page 72



When evaluating a path, the focus changes with each step and predicate.
For example, when evaluating the path x[@y=1]/z, the step x selects a
sequence of nodes, which defines the focus for the predicate. The context size
is the number of nodes selected by x, and then for each node in that sequence,
the predicate is evaluated. The node becomes the current context item, and the
context position is its position within that sequence. If the predicate evaluates

3.4 Navigation Context 73

Static or XPath 
Context item Accessed with dynamic 1.0?

in-scope namespaces get--in-scope-prefixes() static Yes

default element namespace N/A static No

default function namespace N/A static No

in-scope schema definitions N/A static No

in-scope functions N/A static Yes

in-scope collations N/A static No

default collation default-collation() static No

base-uri base-uri() static No

in-scope variables $variable both Yes

context item . dynamic Yes

context position position() dynamic Yes

context size last() dynamic Yes

current date and time current-date() dynamic No
current-time()
current-dateTime()

implicit timezone implicit-timezone() dynamic No

input sequence N/A dynamic No

Table 3.3 XQuery expression context

03Brundage_ch03.qxd  1/8/04  1:09 PM  Page 73



to true, then the node is kept in the result, otherwise it is omitted. The result of
this step becomes the focus for the next step z.

The current context item can be accessed using the dot (.) expression, and
in fact x[@y=1] is short for x[./@y = 1]. Every relative path in a predicate
begins at the current context item.

The current context position can be accessed using the function position().
For example, when evaluating the path x[position() > 3], the predicate elimi-
nates the first three items in the sequence selected by x.

Finally, the context size can be accessed using the function last(). For
example, the path x[last()] selects the last child element named x. The
efficiency of the last() function depends on the implementation. In cases
where you are streaming through an XML input, last() always requires at
least a little buffering to evaluate, and can require a lot of buffering. For
example, x[count(y) < last()]must first count the number of x child ele-
ments, and then iterate through each of them testing the condition. (Imple-
mentations that preload the XML into memory or a database are less
affected by this consideration, because they may already have the sequence
length available.)

3.4.3 Variable Declarations

XQuery can also declare and use variables. Certain expressions, such as
FLWOR and typeswitch, introduce new variables into scope. Some imple-
mentations also allow externally defined variables to be passed to an XQuery.
You’ll see examples of both of these later.

There are two aspects to variable context. In the static context are all the
variable declarations, that is, the names and static types of the variables that are
available to the XQuery expression. The evaluation context also contains this
information, along with the variable values (and their dynamic types), called
the variable bindings.

Variables are accessed by name using an expression such as $variable.
Attempting to use a variable that isn’t in the static context (that is, not in scope)
causes a compile-time error.

3.4.4 Namespace Declarations

The static context also includes namespace declarations, which may be defined
in the query prolog or in element constructors. The namespace declarations are
just a set of prefix and namespace pairs that allow prefixes to be used to stand in

74 Chapter 3 Navigation

03Brundage_ch03.qxd  1/8/04  1:09 PM  Page 74



for the namespace names. XQuery allows for two different kinds of default
namespaces, one for resolving element and type names, and the other for resolv-
ing function names (see Chapter 5 for additional details about the query prolog).

3.4.5 Function Declarations

The static context also includes all functions available to the query. These
include the built-in XQuery functions, as well as user-defined functions (see
Chapter 4) and possibly other extension functions provided by the implementa-
tion (see Chapter 14).

XSLT 1.0 provides a function-available() function for determining
whether a function is in the static context, but XQuery doesn’t have an equivalent.

3.4.6 Collations

Collations are used for string comparisons and sorting; the default collation and
possibly other in-scope collations are part of the static context. See Chapter 8
for details.

3.5 Navigation Examples

To illustrate the navigation concepts introduced in this chapter, let’s consider a
variety of different navigation tasks over the sample XML document,
team.xml, from Chapter 1. For convenience, it’s repeated in Listing 3.6.

This document contains employee information from a fictitious organiza-
tion. The data consists primarily of Employee elements, in which parent/child
relationships in the XML correspond to manager/employee relationships in the
organization. Just to spice things up a bit, the document also contains a few
comments and processing instructions.

Listing 3.6 The team.xml document

<?xml version='1.0'?>

<Team name="Project 42" xmlns:a="urn:annotations">

<Employee id="E6" years="4.3">

<Name>Chaz Hoover</Name>

3.5 Navigation Examples 75

03Brundage_ch03.qxd  1/8/04  1:09 PM  Page 75



<Title>Architect</Title>

<Expertise>Puzzles</Expertise>

<Expertise>Games</Expertise>

<Employee id="E2" years="6.1" a:assigned-to="Jade Studios">

<Name>Carl Yates</Name>

<Title>Dev Lead</Title>

<Expertise>Video Games</Expertise>

<Employee id="E4" years="1.2" a:assigned-to="PVR">

<Name>Panda Serai</Name>

<Title>Developer</Title>

<Expertise>Hardware</Expertise>

<Expertise>Entertainment</Expertise>

</Employee>

<Employee id="E5" years="0.6">

<?Follow-up?>

<Name>Jason Abedora</Name>

<Title>Developer</Title>

<Expertise>Puzzles</Expertise>

</Employee>

</Employee>

<Employee id="E1" years="8.2">

<!-- new hire 13 May -->

<Name>Kandy Konrad</Name>

<Title>QA Lead</Title>

<Expertise>Movies</Expertise>

<Expertise>Sports</Expertise>

<Employee id="E0" years="8.5" a:status="on leave">

<Name>Wanda Wilson</Name>

<Title>QA Engineer</Title>

<Expertise>Home Theater</Expertise>

<Expertise>Board Games</Expertise>

<Expertise>Puzzles</Expertise>

</Employee>

</Employee>

<Employee id="E3" years="2.8">

<Name>Jim Barry</Name>

<Title>QA Engineer</Title>

<Expertise>Video Games</Expertise>

</Employee>

</Employee>

</Team>

76 Chapter 3 Navigation

03Brundage_ch03.qxd  1/8/04  1:09 PM  Page 76



Each Employee has an id attribute that we will assume has been typed as
xs:ID with a DTD or XML Schema so that it can be looked up by the id()
lookup function. And finally, the team.xml document contains some “annota-
tions” in another namespace ("urn:annotations"). These attributes describe
additional information about the employees and are used here to demonstrate
navigation using qualified names and the other wildcard node tests.

For the first example, the team.xml document is loaded using the doc()
function. For the remaining examples, we will assume that this document is
already the input sequence, so that all paths are resolved relative to it without
loading it explicitly.

As our first task, consider finding the names of all employees. Because
Employee elements occur at many different levels in the XML, use the descen-
dant navigation shortcut // to match every Employee element descendant of
the root document node. Finally, select their child elements named Name. The
result is a list of the names of all employees in the document (returned in docu-
ment order), as shown in Listing 3.7.

Listing 3.7 Find the names of all employees

doc("team.xml")//Employee/Name

=>

<Name>Chaz Hoover</Name>

<Name>Carl Yates</Name>

<Name>Panda Serai</Name>

<Name>Jason Abedora</Name>

<Name>Kandy Konrad</Name>

<Name>Wanda Wilson</Name>

<Name>Jim Barry</Name>

Suppose instead we want to select only some of the employees, subject to
some condition as in Listing 3.8.

Listing 3.8 Name all employees who have been at the company less than
two years

//Employee[@years < 2]/Name

=>

<Name>Panda Serai</Name>

<Name>Jason Abedora</Name>

3.5 Navigation Examples 77

03Brundage_ch03.qxd  1/8/04  1:09 PM  Page 77



This path is the same as the previous one, except that a predicate has been
added to the Employee step. We want to filter the Employee elements so that we
select only those whose years attribute has a value less than 2. So we use the
attribute axis @ and the less-than comparison operator < to compare the years
attribute against 2. Then from these filtered employees, their names are
selected as in the previous example.

We can also search for attributes in another namespace. For example, we
could search for all employees currently assigned, as shown in Listing 3.9.

Listing 3.9 Find all employees currently assigned

declare namespace ann = "urn:annotations";

//Employee[@ann:assigned]/Name

=>

<Name>Carl Yates</Name>

<Name>Panda Serai</Name>

In this query, we have used the query prolog to declare a namespace prefix,
and then used this prefix in the attribute name test @ann:assigned to match
attributes with the local name equal to assigned and namespace equal to
urn:annotations. Note that the prefix used in the query can be (and in this
case is) different from the one used in the original document.

By putting the attribute test in the predicate with no comparison, we test
for its existence. The predicate is converted using the Effective Boolean Value
rule, which tests whether the sequence is non-empty. Consequently, this XPath
finds all employees with an assignment, regardless of what that assignment
actually is. Similarly, we could find all employees who lack an assignment by
applying the not() function, as shown in Listing 3.10.

Listing 3.10 Find all unassigned employees

declare namespace ann = "urn:annotations";

//Employee[not(@ann:assigned)]/Name

=>

<Name>Chaz Hoover</Name>

<Name>Jason Abedora</Name>

<Name>Kandy Konrad</Name>

<Name>Wanda Wilson</Name>

<Name>Jim Barry</Name>

78 Chapter 3 Navigation

03Brundage_ch03.qxd  1/8/04  1:09 PM  Page 78



The query to find all employees with an expertise in puzzles is superfi-
cially similar to the previous query. The previous query needed to compare
attribute values; this query (see Listing 3.11) needs to compare child ele-
ment values.

Listing 3.11 Find all employees skilled in puzzles

//Employee[Expertise = "Puzzles"]/Name

=>

<Name>Chaz Hoover</Name>

<Name>Jason Abedora</Name>

<Name>Wanda Wilson</Name>

This case is made somewhat more difficult by the fact that employees may
have more than one expertise. Consequently, we must test whether there exists
any child expertise element with the desired value. Fortunately, the general com-
parison operators like < and = are defined so that they already do this existence
test implicitly (see Chapter 5). Thus, the predicate Expertise = "Puzzles" tests
whether there exists a child element named Expertise whose string value is
"Puzzles".

Navigation can also be used to compute other values. For example, Listing
3.12 counts the number of employees in one division.

Listing 3.12 Count the number of people in Chaz Hoover’s organization

count(//Employee[Name="Chaz Hoover"]/descendant-or-self::Employee)

=>

7

The count() function computes the number of items in a sequence (see
Chapter 5). First we must locate the employee named Chaz Hoover, which can
be done using a query like the ones used previously. But then we must count all
the employees contained in the sub-tree rooted at Chaz Hoover—in other words,
all the descendant Employee elements. By using the descendant-or-self axis,
we have included Chaz Hoover himself in this count. We could exclude him by
instead using the descendant axis as in the path count(//Employee[Name="Chaz
Hoover"]/descendant::Employee).

Instead of counting the entire organization, we could instead count only
those employee elements directly under Chaz Hoover, as shown in Listing 3.13.

3.5 Navigation Examples 79

03Brundage_ch03.qxd  1/8/04  1:09 PM  Page 79



Listing 3.13 Count the number of Chaz Hoover’s direct reports

count(//Employee[Name="Chaz Hoover"]/Employee)

=>

3

Instead of performing a descendant query with //, we have used ordinary
child navigation / to select only those employees who report directly to Chaz
Hoover. This task could also be accomplished in another way, using the parent
axis, as shown in Listing 3.14.

Listing 3.14 Use the parent axis to count Chaz Hoover’s employees

count(//Employee[../Name="Chaz Hoover"])

=>

3

Here we first find every Employee in the document. Then, we check to see
if the parent element has the name Chaz Hoover. We use the .. abbreviation to
navigate to the parent, and then compare its child Name element. This query is
usually much slower than the previous one, although some implementations
can optimize it so that both perform identically.

We can also find other kinds of elements in the tree. For example, we could
extract all comment and processing-instruction nodes by using node kind tests,
as illustrated in Listing 3.15.

Listing 3.15 Find all comments and processing instructions

//comment() | //processing-instruction()

=>

<?Follow up?>

<!-- new hire 13 May -->

In this query, we used the union operator | to combine the results of both
paths. We could have also written //(comment() | processing-instruction())
to achieve the same effect. (See Chapter 5 for more information about the union
operator.)

Notice that the XML declaration <?xml version='1.0'?> at the top of the
document did not match. Although it looks like a processing instruction, XML

80 Chapter 3 Navigation

03Brundage_ch03.qxd  1/8/04  1:09 PM  Page 80



doesn’t treat it as part of the data model, so XQuery doesn’t either. Finally, List-
ing 3.16 demonstrates looking up elements by their IDs.

Listing 3.16 Find all employees with the same job function as employee E0

//Employee[Title = id("E0")/Title]/Name

=>

<Name>Wanda Wilson</Name>

<Name>Jim Barry</Name>

Because we wish to find all employee names satisfying some condition, we
know that the path will consist of //Employee/Name and use a predicate to limit
which employees are matched. This predicate should select all employees with
the same title as that of employee E0. Employee E0 can be found using the id()
navigation function: id("E0"). Then all that remains is to compare the current
employee’s title against that of E0.

Notice that instead of using id(), we could use an absolute path inside the
predicate to search from the root of the document to find the employee with id
E0: //Employee[Title = //Employee[@id="E0"]/Title]/Name. This path has
the advantage that it doesn’t require a DTD or schema to type the id attribute.
However, it is more complex to write and usually will perform worse than the id
lookup (which most implementations optimize into an index or table lookup).
This path essentially performs a join of the document with itself. Joins like this
are often expressed using FLWOR expressions (described in Chapter 6).

3.6 Navigation Complexities

This section discusses the last remaining navigation topics. All of these were
either too esoteric or too complex to merit including in the previous sections. 

3.6.1 Namespaces

XPath 1.0 doesn’t have a way to introduce namespace declarations and doesn’t
use the prefixes of the data it is navigating. Consequently, any namespace pre-
fixes used in an XPath expression must be defined outside of it. In XQuery,
namespaces can be declared in the query prolog (covered in Chapter 5), or
using namespace declarations in XML elements (Chapter 7).

3.6 Navigation Complexities 81

03Brundage_ch03.qxd  1/8/04  1:09 PM  Page 81



Recall that a qualified name consists of two parts, the prefix and the local
name, separated by a colon (:). The prefix is bound to a namespace, but is oth-
erwise unimportant for the purposes of navigation. Instead, it is better to think
in terms of expanded names. An expanded name is the namespace and local
name parts of a name (ignoring the prefix). Table 3.4 summarizes the differ-
ences between the two.

The second example in Table 3.4 is fabricated; XML and XQuery don’t
have a syntax for expanded names. Instead, they always associate the name-
space with a prefix, and then use a qualified name.

In prose descriptions, expanded names are often written with the name-
space part in curly braces ({}), like this: {namespace}local-name. When
there isn’t a namespace (because the name was unqualified or had an empty
namespace), then the expanded name is written as just {}local-name.
Again, this syntax isn’t used in XML or XQuery, just in descriptions of how
they work.

Listing 3.17 XML with namespaces

<root xmlns:x="uri1">

<x:one fish="red"/>

<two x:fish="blue" xmlns="uri2"/>

</root>

For example, in the XML shown in Listing 3.17, there are three elements
with qualified names: root, x:one, and two. The expanded names of these ele-
ments are {}root, {uri1}one, and {uri2}two, respectively. There are two
attributes with qualified names: fish and x:fish. The first of these has the
expanded name {}fish, the second has the expanded name {uri1}fish.

Expanded names are more verbose than qualified names, which explains
why qualified names are used instead. However, most operations—including
validation and navigation—operate only on the namespace and local name

82 Chapter 3 Navigation

Prefix Local Namespace Example

Qualified name Yes Yes No foo:bar

Expanded name No Yes Yes {urn:baz}bar

Table 3.4 Qualified names versus expanded names

03Brundage_ch03.qxd  1/8/04  1:09 PM  Page 82



parts of XML names, usually completely ignoring the prefixes that were used in
the original XML serialization.

Suppose doc("sample.xml") accesses the XML shown in Listing 3.18.

Listing 3.18 sample.xml 

<this xmlns="urn:default" xmlns:ns1="urn:one">

<is a="complex">

<ns1:example ns2:attr="42" xmlns:ns2="urn:two"/>

</is>

</this>

Then you could navigate into it using the XQuery shown in Listing 3.19.

Listing 3.19 Path using namespaces

declare namespace x = "urn:default";

declare namespace y = "urn:one";

declare namespace z = "urn:two";

doc("sample.xml")/x:this/x:is/y:example/@z:attr

The query prolog introduces three namespace declarations, binding the
prefixes x, y, and z to the namespaces urn:default, urn:namespace1, and
urn:namespace2, respectively. The path then uses these namespaces to per-
form its qualified name tests: x:this, x:is, y:example, and z:attr. Again,
notice that the prefixes in the document and the prefixes in the XQuery are
completely unrelated to one another; all that matters are the local name and
namespace parts of the names.

XQuery provides two functions that can access the namespaces in scope on
a node. The get-in-scope-prefixes() function takes one argument, an ele-
ment node, and returns a list of strings (in any order) that are the namespace
prefixes in scope for that element. An empty string is listed for the default
namespace declaration, if any.

The get-namespace-uri-for-prefix() function can look up the name-
space value for a prefix. It takes two arguments, an element node and a string
prefix, and returns the string that is the namespace bound to that prefix (use the
empty string to look up the default namespace declaration). If there is no
namespace bound to that prefix, then this function returns the empty
sequence. Both effects are demonstrated by the examples in Listing 3.20.

3.6 Navigation Complexities 83

03Brundage_ch03.qxd  1/8/04  1:09 PM  Page 83



Listing 3.20 Querying the namespaces in scope

declare namespace x = "urn:default";

get-in-scope-prefixes(doc("sample.xml")/x:this)

=>

("ns1", "")

declare namespace x = "urn:default";

get-namespace-uri-for-prefix(doc("sample.xml")/x:this, "ns1")

=>

"urn:one"

3.6.2 Node Identity

Navigation has some interesting interactions with node identity. When navigat-
ing over constructed XML, it’s important to realize that the construction
process copies nodes used as content, thereby “losing” their node identity.

For example, in the expression <x>{doc("y.xml")//y}}</x>, the nodes
selected by the path are copied into the x element. If you then navigate into
that constructed XML, you get different nodes (by identity) than the originals,
as demonstrated by Listing 3.21. (See Chapter 7 for more information).

Listing 3.21 Navigating over constructed XML

(<x>{doc("y.xml")//y}</x>)//y is doc("y.xml")//y   => false

The doc() function is special in that whenever the same string value is
passed to it, the same node (by identity) is returned. This special behavior pre-
vents you from writing a user-defined function that fully emulates doc() using
construction, because every time your function is invoked it constructs a new
node instance. The difference is demonstrated in Listing 3.22.

Listing 3.22 The doc() function can’t be completely simulated by your own

declare namespace my = "http://www.awprofessional.com";

declare function my:doc($dummy as xs:string) as node() {

document {

element root { () }

}

84 Chapter 3 Navigation

03Brundage_ch03.qxd  1/8/04  1:09 PM  Page 84



};

doc("a.xml") is doc("a.xml")       => true (if a.xml exists)

my:doc("a.xml") is my:doc("a.xml") => false

3.6.3 Other Context Information

In addition to the context items listed in Section 3.4, XQuery provides several
other less commonly used values in the expression context.

The base uri property is part of the static context and is used by the doc()
function when resolving relative URIs. This property can also be accessed
using the base-uri() function.

The current XML space policy is part of the static context and can be
changed by the query prolog. It determines how space characters are handled
in XML constructors (see Chapter 7).

The static context may also provide schema definitions from imported
schemas and a default validation mode and/or validation context. These deter-
mine what user-defined type names are available for use in type tests and other
type operators. See Chapter 9 for examples.

Finally, the current date/time and the implicit timezone properties are part
of the evaluation context. Despite their names, these don’t really provide the
current time, but just some point in time determined by the implementation.
The value doesn’t change during the execution of a query. These values can be
accessed using the current-date(), current-time(), current-dateTime(),
and implicit-timezone() functions (see Appendix C).

3.7 Conclusion

In this chapter, we investigated one of the primary features of XQuery, naviga-
tion. We delved into the syntax and meaning of path expressions, and how the
evaluation context affects (and is affected by) their evaluation.

The chapter discussed the six required XQuery axes (attribute, child,
descendant, descendant-or-self, parent, and self) and the six optional ones
(ancestor, ancestor-or-self, preceding, preceding-sibling, following, and
following-sibling). In addition, it described the name tests, node kind tests,
and wildcards that can be used with axes to select nodes by name, kind, and type.

3.7 Conclusion 85

03Brundage_ch03.qxd  1/8/04  1:09 PM  Page 85



Predicates can be used to filter an expression by other criteria, including
position. Also, XQuery provides several navigation functions, including the
important doc() function, which loads external XML data.

We also explored how to solve a variety of real-world tasks using path navi-
gation. Because paths are so important to XQuery, many additional examples
appear throughout this book, especially in Chapters 10 and 11.

3.8 Further Reading

For more information about XPath 1.0, see the W3C Recommendation at
http://www.w3.org/TR/xpath. The book Essential XML Quick Reference: A
Programmer’s Reference to XML, XPath, XSLT, XML Schema, SOAP, and More
by Aaron Skonnard and Martin Gudginis also a good XPath reference.

A brief history of Unix, including the advent of paths, appears in the article
“The Evolution of the Unix Time-sharing System” by Dennis Ritchie. This arti-
cle has been published in several computer science publications, and is also
available online at http://cm.bell-labs.com/cm/cs/who/dmr/hist.html. 

86 Chapter 3 Navigation

03Brundage_ch03.qxd  1/8/04  1:09 PM  Page 86


